Joint modeling of longitudinal categorical data and survival data
نویسندگان
چکیده
In many biomedical studies, it is of interest to study the covariate effect on both longitudinal categorical outcomes and survival outcomes. For example, in cancer research, it is of interest to study the treatment effect on both quality of life which is a categorical outcome measured longitudinally and survival time. In this talk, we will discuss such joint models. Random effects are introduced into the simultaneous models to account for dependence between longitudinal categorical outcome and survival time due to unobserved factors. EM algorithms are used to derive the point estimates for the parameters in the proposed model and profile likelihood function is used to estimate their variances. The asymptotic properties are established for our proposed estimators. Finally, simulation studies are conducted to examine the finitesample properties of the proposed estimators and a liver transplantation data set is analyzed to illustrate our approaches. This is joint work with Jaeun Choi and Donglin Zeng.
منابع مشابه
Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملمدلسازی توام دادههای بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی
Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...
متن کاملکاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی
Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...
متن کاملAnalysis of Dynamic Longitudinal Categorical Data in Incomplete Contingency Tables Using Capture-Recapture Sampling: A case Study of Semi-Concentrated Doctoral Exam
Abstract. In this paper, dynamic longitudinal categorical data and estimation of their parameters in incomplete contingency tables are evaluated. To apply the proposed method, a study has been conducted on the data of the semi-concentrated doctoral exam of the National Organization for Educational Testing (NOET). The results of studies such as the obtained confidence intervals and calculating t...
متن کاملبرآورد تابع بقای شرطی زمان شکست بهشرط یک متغیر کمکی زمانمتغیر با مشاهدات سانسورشدهی بازهای
In this paper, we propose an approach for the nonparametric estimation of the conditional survival function of a time to failure‎ ‎given a time-varying covariate under interval-censoring for the failure time. Our strategy consists in‎ ‎modeling the covariate path with a random effects model, ‎as is done in the degradation and joint longitudinal and survival data modeling&lrm...
متن کامل